📒
PaperNotes
  • PAPER NOTES
  • Meta-Learning with Implicit Gradient
  • DARTS: Differentiable Architecture Search
  • Meta-Learning of Neural Architectures for Few-Shot Learning
  • Towards Fast Adaptation of Neural Architectures with Meta Learning
  • Editable Neural Networks
  • ANIL (Almost No Inner Loop)
  • Meta-Learning Representation for Continual Learning
  • Learning to learn by gradient descent by gradient descent
  • Modular Meta-Learning with Shrinkage
  • NADS: Neural Architecture Distribution Search for Uncertainty Awareness
  • Modular Meta Learning
  • Sep
    • Incremental Few Shot Learning with Attention Attractor Network
    • Learning Steady-States of Iterative Algorithms over Graphs
      • Experiments
    • Learning combinatorial optimization algorithms over graphs
    • Meta-Learning with Shared Amortized Variational Inference
    • Concept Learners for Generalizable Few-Shot Learning
    • Progressive Graph Learning for Open-Set Domain Adaptation
    • Probabilistic Neural Architecture Search
    • Large-Scale Long-Tailed Recognition in an Open World
    • Learning to stop while learning to predict
    • Adaptive Risk Minimization: A Meta-Learning Approach for Tackling Group Shift
    • Learning to Generalize: Meta-Learning for Domain Generalization
  • Oct
    • Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization
    • Network Architecture Search for Domain Adaptation
    • Continuous Meta Learning without tasks
    • Learning Causal Models Online
    • Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples
    • Conditional Neural Progress (CNPs)
    • Reviving and Improving Recurrent Back-Propagation
    • Meta-Q-Learning
    • Learning Self-train for semi-supervised few shot classification
    • Watch, Try, Learn: Meta-Learning from Demonstrations and Rewards
  • Nov
    • Neural Process
    • Adversarially Robust Few-Shot Learning: A Meta-Learning Approach
    • Learning to Adapt to Evolving Domains
  • Tutorials
    • Relax constraints to continuous
    • MAML, FO-MAML, Reptile
    • Gradient Descent
      • Steepest Gradient Descent
      • Conjugate Gradient Descent
  • KL, Entropy, MLE, ELBO
  • Coding tricks
    • Python
    • Pytorch
  • ml
    • kmeans
Powered by GitBook
On this page
  • Motivation
  • Reference

Was this helpful?

  1. Oct

Reviving and Improving Recurrent Back-Propagation

ICML 18 10-26-2020

PreviousConditional Neural Progress (CNPs)NextMeta-Q-Learning

Last updated 4 years ago

Was this helpful?

Motivation

the original BPTT is not efficient, because of the inverse matrix

instead of using this, this paper use Neurman series to approximate the inverse matrix to reduce the cost.

similar to the hyperparameter optimization paper

Reference

http://proceedings.mlr.press/v80/liao18c/liao18c.pdf